Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 438
1.
Elife ; 132024 Apr 25.
Article En | MEDLINE | ID: mdl-38661167

Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.


Cytoskeleton , Homeodomain Proteins , Osteoblasts , Repressor Proteins , Signal Transduction , p21-Activated Kinases , Osteoblasts/metabolism , Animals , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/deficiency , Mice , Cytoskeleton/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/deficiency , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Cell Adhesion , Cell Movement
2.
PLoS One ; 17(4): e0266454, 2022.
Article En | MEDLINE | ID: mdl-35413089

Progression of virtually all forms of chronic kidney disease (CKD) is associated with activation of pro-inflammatory and pro-fibrotic signaling pathways. Despite extensive research, progress in identifying therapeutic targets to arrest or slow progression of CKD has been limited by incomplete understanding of basic mechanisms underlying renal inflammation and fibrosis in CKD. Recent studies have identified Kruppel-like transcription factors that have been shown to play critical roles in renal development, homeostasis, and response to injury. Although KLF11 deficiency has been shown to increase collagen production in vitro and tissue fibrosis in other organs, no previous study has linked KLF11 to the development of CKD. We sought to test the hypothesis that KLF11 deficiency promotes CKD through upregulation of pro-inflammatory and pro-fibrogenic signaling pathways in murine unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis. We found that KLF11-deficiency exacerbates renal injury in the UUO model through activation of the TGF-ß/SMAD signaling pathway and through activation of several pro-inflammatory chemokine signaling pathways. Based on these considerations, we conclude that agents increase KLF11 expression may provide novel therapeutic targets to slow the progression of CKD.


Apoptosis Regulatory Proteins , Renal Insufficiency, Chronic , Repressor Proteins , Ureteral Obstruction , Animals , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/metabolism , Chemokines/metabolism , Disease Models, Animal , Fibrosis , Kidney/pathology , Mice , Mice, Inbred C57BL , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Repressor Proteins/deficiency , Repressor Proteins/metabolism , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
3.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article En | MEDLINE | ID: mdl-35165191

FOXP1 syndrome caused by haploinsufficiency of the forkhead box protein P1 (FOXP1) gene is a neurodevelopmental disorder that manifests motor dysfunction, intellectual disability, autism, and language impairment. In this study, we used a Foxp1+/- mouse model to address whether cognitive and motor deficits in FOXP1 syndrome are associated with mitochondrial dysfunction and oxidative stress. Here, we show that genes with a role in mitochondrial biogenesis and dynamics (e.g., Foxo1, Pgc-1α, Tfam, Opa1, and Drp1) were dysregulated in the striatum of Foxp1+/- mice at different postnatal stages. Furthermore, these animals exhibit a reduced mitochondrial membrane potential and complex I activity, as well as decreased expression of the antioxidants superoxide dismutase 2 (Sod2) and glutathione (GSH), resulting in increased oxidative stress and lipid peroxidation. These features can explain the reduced neurite branching, learning and memory, endurance, and motor coordination that we observed in these animals. Taken together, we provide strong evidence of mitochondrial dysfunction in Foxp1+/- mice, suggesting that insufficient energy supply and excessive oxidative stress underlie the cognitive and motor impairment in FOXP1 deficiency.


Forkhead Transcription Factors/genetics , Intellectual Disability/genetics , Motor Disorders/genetics , Repressor Proteins/genetics , Animals , Autism Spectrum Disorder/genetics , Autistic Disorder/metabolism , Cognition/physiology , Disease Models, Animal , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/metabolism , Haploinsufficiency/genetics , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Motor Activity/genetics , Motor Disorders/metabolism , Neurodevelopmental Disorders/metabolism , Neurogenesis , Oxidative Stress/physiology , Repressor Proteins/deficiency , Repressor Proteins/metabolism
4.
Nat Commun ; 13(1): 134, 2022 01 10.
Article En | MEDLINE | ID: mdl-35013307

Combined methylmalonic acidemia and homocystinuria (cblC) is the most common inborn error of intracellular cobalamin metabolism and due to mutations in Methylmalonic Aciduria type C and Homocystinuria (MMACHC). Recently, mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) were shown to result in cellular phenocopies of cblC. Since HCFC1/RONIN jointly regulate MMACHC, patients with mutations in these factors suffer from reduced MMACHC expression and exhibit a cblC-like disease. However, additional de-regulated genes and the resulting pathophysiology is unknown. Therefore, we have generated mouse models of this disease. In addition to exhibiting loss of Mmachc, metabolic perturbations, and developmental defects previously observed in cblC, we uncovered reduced expression of target genes that encode ribosome protein subunits. We also identified specific phenotypes that we ascribe to deregulation of ribosome biogenesis impacting normal translation during development. These findings identify HCFC1/RONIN as transcriptional regulators of ribosome biogenesis during development and their mutation results in complex syndromes exhibiting aspects of both cblC and ribosomopathies.


Amino Acid Metabolism, Inborn Errors/genetics , Homocystinuria/genetics , Host Cell Factor C1/genetics , Oxidoreductases/genetics , Repressor Proteins/genetics , Ribosomes/genetics , Vitamin B 12 Deficiency/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Disease Models, Animal , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Homocystinuria/metabolism , Homocystinuria/pathology , Host Cell Factor C1/deficiency , Humans , Male , Mice , Mice, Knockout , Mutation , Organelle Biogenesis , Oxidoreductases/deficiency , Protein Biosynthesis , Protein Subunits/genetics , Protein Subunits/metabolism , Repressor Proteins/deficiency , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Ribosomes/pathology , Vitamin B 12/metabolism , Vitamin B 12 Deficiency/metabolism , Vitamin B 12 Deficiency/pathology
5.
Nat Commun ; 13(1): 208, 2022 01 11.
Article En | MEDLINE | ID: mdl-35017538

Cancer is often called a disease of aging. There are numerous ways in which cancer epidemiology and behaviour change with the age of the patient. The molecular bases for these relationships remain largely underexplored. To characterise them, we analyse age-associations in the nuclear and mitochondrial somatic mutational landscape of 20,033 tumours across 35 tumour-types. Age influences both the number of mutations in a tumour (0.077 mutations per megabase per year) and their evolutionary timing. Specific mutational signatures are associated with age, reflecting differences in exogenous and endogenous oncogenic processes such as a greater influence of tobacco use in the tumours of younger patients, but higher activity of DNA damage repair signatures in those of older patients. We find that known cancer driver genes such as CDKN2A and CREBBP are mutated in age-associated frequencies, and these alter the transcriptome and predict for clinical outcomes. These effects are most striking in brain cancers where alterations like SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three cancer datasets, we show that age shapes the somatic mutational landscape of cancer, with clinical implications.


Aging/genetics , CREB-Binding Protein/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Repair , DNA, Neoplasm/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Age Factors , Aging/metabolism , CREB-Binding Protein/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA, Neoplasm/metabolism , Datasets as Topic , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mitochondria/metabolism , Mutation Rate , Neoplasm Proteins/metabolism , Neoplasms/classification , Neoplasms/metabolism , Neoplasms/pathology , Repressor Proteins/deficiency , Repressor Proteins/genetics , Smoking/genetics , Smoking/metabolism , Transcriptome , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
6.
J Pathol ; 256(3): 297-309, 2022 03.
Article En | MEDLINE | ID: mdl-34767259

Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co-occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT-immortalized (i.e. p53- and RB-deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild-type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP-seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC-knockout cells expressing mutant IDH1-R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH-mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Astrocytes/enzymology , Epigenome , Epigenomics , Gene Expression Profiling , Isocitrate Dehydrogenase/genetics , Mutation , Repressor Proteins/genetics , Transcriptome , Astrocytes/pathology , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Transformed , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Isocitrate Dehydrogenase/metabolism , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , Oligodendroglioma/enzymology , Oligodendroglioma/genetics , Oligodendroglioma/pathology , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Repressor Proteins/deficiency
7.
Nat Commun ; 12(1): 7037, 2021 12 02.
Article En | MEDLINE | ID: mdl-34857760

Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking E4F1 activate a p53-dependent transcriptional program involved in lipid metabolism. The direct interaction between E4F1 and p53 and their co-recruitment to the Steaoryl-CoA Desaturase-1 locus play an important role to regulate monounsaturated fatty acids synthesis in adipocytes. Consistent with the role of this E4F1-p53-Steaoryl-CoA Desaturase-1 axis in adipocytes, p53 inactivation or diet complementation with oleate partly restore adiposity and improve insulin sensitivity in E4F1-deficient mice. Altogether, our findings identify a crosstalk between E4F1 and p53 in the control of lipid metabolism in adipocytes that is relevant to obesity and insulin resistance.


Adipocytes/metabolism , Adipose Tissue/metabolism , Obesity/genetics , Repressor Proteins/genetics , Stearoyl-CoA Desaturase/genetics , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Adipocytes/pathology , Adipose Tissue/pathology , Adult , Aged , Animals , Body Mass Index , Fatty Acids, Monounsaturated/metabolism , Female , Gene Expression Regulation , Humans , Insulin Resistance , Lipid Metabolism/genetics , Male , Mice , Mice, Knockout , Middle Aged , Obesity/metabolism , Obesity/pathology , Repressor Proteins/deficiency , Repressor Proteins/metabolism , Signal Transduction , Stearoyl-CoA Desaturase/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism
8.
Stem Cell Reports ; 16(12): 2988-3004, 2021 12 14.
Article En | MEDLINE | ID: mdl-34798064

RYBP (Ring1 and YY1 binding protein), an essential component of the Polycomb repressive complex 1 (PRC1), plays pivotal roles in development and diseases. However, the roles of Rybp in neuronal development remains completely unknown. In the present study, we have shown that the depletion of Rybp inhibits proliferation and promotes neuronal differentiation of embryonic neural progenitor cells (eNPCs). In addition, Rybp deficiency impairs the morphological development of neurons. Mechanistically, Rybp deficiency does not affect the global level of ubiquitination of H2A, but it inhibits Notch signaling pathway in eNPCs. The direct interaction between RYBP and CIR1 facilitates the binding of RBPJ to Notch intracellular domain (NICD) and consequently activated Notch signaling. Rybp loss promotes CIR1 competing with RBPJ to bind with NICD, and inhibits Notch signaling. Furthermore, ectopic Hes5, Notch signaling downstream target, rescues Rybp-deficiency-induced deficits. Collectively, our findings show that RYBP regulates embryonic neurogenesis and neuronal development through modulating Notch signaling in a PRC1-independent manner.


Embryo, Mammalian/metabolism , Neurogenesis , Polycomb Repressive Complex 1/metabolism , Receptors, Notch/metabolism , Repressor Proteins/metabolism , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors , Brain/embryology , Cell Differentiation , Cell Proliferation , Cell Shape , Female , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Repressor Proteins/deficiency , Transcriptome/genetics
9.
Sci Rep ; 11(1): 21671, 2021 11 04.
Article En | MEDLINE | ID: mdl-34737385

Trypanosoma cruzi-the causative agent of Chagas disease-like other kinetoplastids, relies mostly on post-transcriptional mechanisms for regulation of gene expression. However, trypanosomatids undergo drastic changes in nuclear architecture and chromatin structure along their complex life cycle which, combined with a remarkable set of reversible histone post-translational modifications, indicate that chromatin is also a target for control of gene expression and differentiation signals in these organisms. Chromatin-modifying enzymes have a direct impact on gene expression programs and DNA metabolism. In this work, we have investigated the function of T. cruzi histone deacetylase 4 (TcHDAC4). We show that, although TcHDAC4 is not essential for viability, metacyclic trypomastigote TcHDAC4 null mutants show a thin cell body and a round and less condensed nucleus located very close to the kinetoplast. Sixty-four acetylation sites were quantitatively evaluated, which revealed H2AT85ac, H4K10ac and H4K78ac as potential target sites of TcHDAC4. Gene expression analyses identified three chromosomes with overrepresented regions of differentially expressed genes in the TcHDAC4 knockout mutant compared with the wild type, showing clusters of either up or downregulated genes. The adjacent chromosomal location of some of these genes indicates that TcHDAC4 participates in gene expression regulation during T. cruzi differentiation.


Gene Expression Regulation/genetics , Histone Deacetylases/deficiency , Histone Deacetylases/genetics , Trypanosoma cruzi/genetics , Acetylation , Animals , Cell Culture Techniques , Chagas Disease/genetics , Chlorocebus aethiops , Chromatin/metabolism , Gene Expression/genetics , Humans , Life Cycle Stages/genetics , Protein Processing, Post-Translational/genetics , Protozoan Proteins/genetics , Repressor Proteins/deficiency , Repressor Proteins/genetics , Trypanosoma cruzi/metabolism , Vero Cells
10.
Nature ; 600(7887): 138-142, 2021 12.
Article En | MEDLINE | ID: mdl-34759314

Pathogens use virulence factors to inhibit the immune system1. The guard hypothesis2,3 postulates that hosts monitor (or 'guard') critical innate immune pathways such that their disruption by virulence factors provokes a secondary immune response1. Here we describe a 'self-guarded' immune pathway in human monocytes, in which guarding and guarded functions are combined in one protein. We find that this pathway is triggered by ICP0, a key virulence factor of herpes simplex virus type 1, resulting in robust induction of anti-viral type I interferon (IFN). Notably, induction of IFN by ICP0 is independent of canonical immune pathways and the IRF3 and IRF7 transcription factors. A CRISPR screen identified the ICP0 target MORC34 as an essential negative regulator of IFN. Loss of MORC3 recapitulates the IRF3- and IRF7-independent IFN response induced by ICP0. Mechanistically, ICP0 degrades MORC3, which leads to de-repression of a MORC3-regulated DNA element (MRE) adjacent to the IFNB1 locus. The MRE is required in cis for IFNB1 induction by the MORC3 pathway, but is not required for canonical IFN-inducing pathways. As well as repressing the MRE to regulate IFNB1, MORC3 is also a direct restriction factor of HSV-15. Our results thus suggest a model in which the primary anti-viral function of MORC3 is self-guarded by its secondary IFN-repressing function-thus, a virus that degrades MORC3 to avoid its primary anti-viral function will unleash the secondary anti-viral IFN response.


Adenosine Triphosphatases/immunology , DNA-Binding Proteins/immunology , Models, Immunological , Virulence Factors/immunology , Adenosine Triphosphatases/deficiency , Adenosine Triphosphatases/metabolism , CRISPR-Cas Systems , Cell Line , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Gene Editing , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Humans , Immediate-Early Proteins/immunology , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Type I/antagonists & inhibitors , Interferon Type I/genetics , Interferon Type I/immunology , Monocytes/immunology , Receptor, Interferon alpha-beta , Repressor Proteins/deficiency , Repressor Proteins/immunology , Repressor Proteins/metabolism , Response Elements/genetics , Ubiquitin-Protein Ligases/immunology
11.
Cell Rep ; 36(11): 109697, 2021 09 14.
Article En | MEDLINE | ID: mdl-34525371

Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons. By combining intersectional labeling and viral-mediated tracing, we demonstrate that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the murine dopaminergic system. In the substantia nigra, the Bcl11a-expressing mDA subset is particularly vulnerable to neurodegeneration upon α-synuclein overexpression or oxidative stress. Inactivation of Bcl11a in murine mDA neurons increases this susceptibility further, alters the distribution of mDA neurons, and results in deficits in skilled motor behavior. In summary, BCL11A defines mDA subpopulations with highly distinctive characteristics and is required for establishing and maintaining their normal physiology.


Dopaminergic Neurons/metabolism , Repressor Proteins/metabolism , Animals , Behavior, Animal , Brain/metabolism , Dopamine/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Knockout , Repressor Proteins/deficiency , Repressor Proteins/genetics , Substantia Nigra/metabolism , Substantia Nigra/pathology , Transcriptome , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/pathology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
12.
Aging Cell ; 20(10): e13471, 2021 10.
Article En | MEDLINE | ID: mdl-34520100

During aging, brain performances decline. Cellular senescence is one of the aging drivers and a key feature of a variety of human age-related disorders. The transcriptional repressor RE1-silencing transcription factor (REST) has been associated with aging and higher risk of neurodegenerative disorders. However, how REST contributes to the senescence program and functional impairment remains largely unknown. Here, we report that REST is essential to prevent the senescence phenotype in primary mouse neurons. REST deficiency causes failure of autophagy and loss of proteostasis, increased oxidative stress, and higher rate of cell death. Re-establishment of autophagy reverses the main hallmarks of senescence. Our data indicate that REST has a protective role in physiological aging by regulating the autophagic flux and the senescence program in neurons, with implications for neurological disorders associated with aging.


Autophagy/genetics , Cellular Senescence/genetics , Neurons/metabolism , Repressor Proteins/deficiency , Animals , Humans , Mice , Oxidative Stress
13.
Cancer Sci ; 112(10): 4064-4074, 2021 Oct.
Article En | MEDLINE | ID: mdl-34251713

Programmed cell death ligand 1 (PD-L1) is a major immunosuppressive checkpoint protein expressed by tumor cells to subvert anticancer immunity. Recent studies have shown that ionizing radiation (IR) upregulates the expression of PD-L1 in tumor cells. However, whether an IR-induced DNA damage response (DDR) directly regulates PD-L1 expression and the functional significance of its upregulation are not fully understood. Here, we show that IR-induced upregulation of PD-L1 expression proceeds through both transcriptional and post-translational mechanisms. Upregulated PD-L1 was predominantly present on the cell membrane, resulting in T-cell apoptosis in a co-culture system. Using mass spectrometry, we identified PD-L1 interacting proteins and found that BCLAF1 (Bcl2 associated transcription factor 1) is an important regulator of PD-L1 in response to IR. BCLAF1 depletion decreased PD-L1 expression by promoting the ubiquitination of PD-L1. In addition, we show that CMTM6 is upregulated in response to IR and participates in BCLAF1-dependent PD-L1 upregulation. Finally, we demonstrated that the ATM/BCLAF1/PD-L1 axis regulated PD-L1 stabilization in response to IR. Together, our findings reveal a novel regulatory mechanism of PD-L1 expression in the DDR.


B7-H1 Antigen/metabolism , Radiation, Ionizing , Repressor Proteins/physiology , Tumor Suppressor Proteins/physiology , Apoptosis , Ataxia Telangiectasia Mutated Proteins/metabolism , B7-H1 Antigen/radiation effects , Cell Line, Tumor , Cell Membrane/metabolism , Coculture Techniques , DNA Damage , Humans , Jurkat Cells , MARVEL Domain-Containing Proteins/metabolism , MARVEL Domain-Containing Proteins/radiation effects , Mass Spectrometry , Myelin Proteins/metabolism , Myelin Proteins/radiation effects , Neoplasm Proteins/metabolism , Protein Modification, Translational , Protein Processing, Post-Translational , Repressor Proteins/deficiency , T-Lymphocytes/cytology , T-Lymphocytes/radiation effects , Tumor Suppressor Proteins/deficiency , Ubiquitination , Up-Regulation/radiation effects
14.
Neurotherapeutics ; 18(3): 2021-2039, 2021 07.
Article En | MEDLINE | ID: mdl-34132974

Biallelic loss-of-function mutations in Coiled-coil and C2 domain containing 1A (CC2D1A) cause autosomal recessive intellectual disability, sometimes comorbid with other neurodevelopmental disabilities, such as autism spectrum disorder (ASD) and seizures. We recently reported that conditional deletion of Cc2d1a in glutamatergic neurons of the postnatal mouse forebrain leads to impaired hippocampal synaptic plasticity and cognitive function. However, the pathogenic origin of the autistic features of CC2D1A deficiency remains elusive. Here, we confirmed that CC2D1A is highly expressed in the cortical zones during embryonic development. Taking advantage of Cre-LoxP-mediated gene deletion strategy, we generated a novel line of Cc2d1a conditional knockout (cKO) mice by crossing floxed Cc2d1a mice with Emx1-Cre mice, in which CC2D1A is ablated specifically in glutamatergic neurons throughout all embryonic and adult stages. We found that CC2D1A deletion leads to a trend toward decreased number of cortical progenitor cells at embryonic day 12.5 and alters the cortical thickness on postnatal day 10. In addition, male Cc2d1a cKO mice display autistic-like phenotypes including self-injurious repetitive grooming and aberrant social interactions. Loss of CC2D1A also results in decreased complexity of apical dendritic arbors of medial prefrontal cortex (mPFC) layer V pyramidal neurons and increased synaptic excitation/inhibition (E/I) ratio in the mPFC. Notably, chronic treatment with minocycline rescues behavioral and morphological abnormalities, as well as E/I changes, in male Cc2d1a cKO mice. Together, these findings indicate that male Cc2d1a cKO mice recapitulate autistic-like phenotypes of human disorder and suggest that minocycline has both structural and functional benefits in treating ASD.


Autistic Disorder/metabolism , Glutamic Acid/metabolism , Neurons/metabolism , Repressor Proteins/deficiency , Social Interaction , Animals , Animals, Newborn , Autistic Disorder/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Repressor Proteins/genetics
15.
Biochem Biophys Res Commun ; 563: 98-104, 2021 07 23.
Article En | MEDLINE | ID: mdl-34062393

Hepatocellular carcinoma (HCC) is the most common primary liver cancer to cause liver cancer related deaths worldwide. Zinc finger protein 746 (ZNF746), initially identified as a Parkin-interacting substrate (PARIS), acts as a transcriptional repressor of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in Parkinson's disease. As recent studies reported that PARIS is associated with cancer onset, we investigated whether PARIS is associated with HCC. We found an increase in insoluble parkin and PARIS accumulation in the liver of diethylnitrosamine (DEN)-injected mice, leading to the downregulation of PGC-1α and nuclear respiratory factor 1 (NRF1). Interestingly, the occurrence of DEN-induced tumors was significantly alleviated in the livers of DEN-injected PARIS knockout mice compared to DEN-injected wild-type mice, suggesting that PARIS is involved in DEN-induced hepatocellular tumorigenesis. Moreover, H2O2-treated Chang liver cells showed accumulation of PARIS and downregulation of PGC-1α and NRF1. Thus, these results suggest that PARIS upregulation by oncogenic stresses can promote cancer progression by suppressing the transcriptional level of PGC-1α, and the modulation of PARIS can be a promising therapeutic target for HCC.


Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Repressor Proteins/metabolism , Animals , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Repressor Proteins/deficiency , Repressor Proteins/genetics , Tumor Cells, Cultured
16.
Nat Commun ; 12(1): 3285, 2021 06 02.
Article En | MEDLINE | ID: mdl-34078899

In peripheral nerves, Schwann cells form myelin and provide trophic support to axons. We previously showed that the mitochondrial protein prohibitin 2 can localize to the axon-Schwann-cell interface and is required for developmental myelination. Whether the homologous protein prohibitin 1 has a similar role, and whether prohibitins also play important roles in Schwann cell mitochondria is unknown. Here, we show that deletion of prohibitin 1 in Schwann cells minimally perturbs development, but later triggers a severe demyelinating peripheral neuropathy. Moreover, mitochondria are heavily affected by ablation of prohibitin 1 and demyelination occurs preferentially in cells with apparent mitochondrial loss. Furthermore, in response to mitochondrial damage, Schwann cells trigger the integrated stress response, but, contrary to what was previously suggested, this response is not detrimental in this context. These results identify a role for prohibitin 1 in myelin integrity and advance our understanding about the Schwann cell response to mitochondrial damage.


Femoral Nerve/metabolism , Mitochondria/metabolism , Repressor Proteins/genetics , Schwann Cells/metabolism , Sciatic Nerve/metabolism , Tibial Nerve/metabolism , Animals , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Axons/metabolism , Axons/ultrastructure , Endoplasmic Reticulum Chaperone BiP , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Female , Femoral Nerve/pathology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/pathology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Prohibitins , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/deficiency , Schwann Cells/pathology , Sciatic Nerve/pathology , Stress, Physiological , Tibial Nerve/pathology , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , gamma-Glutamylcyclotransferase/genetics , gamma-Glutamylcyclotransferase/metabolism
17.
Br J Haematol ; 193(6): 1220-1227, 2021 06.
Article En | MEDLINE | ID: mdl-33997955

Reactivation of fetal haemoglobin (HbF) expression is an effective way to treat ß-thalassaemia and sickle cell anaemia. In the present study, we identified a novel GATA zinc finger domain-containing protein 2A (GATAD2A) mutation, which contributed to the elevation of HbF and ameliorated clinical severity in a patient with ß-thalassaemia, by targeted next-generation sequencing. Knockout of GATAD2A led to a significant induction of HbF in both human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) and human cluster of differentiation (CD)34+ cells with a detectable impact on erythroid differentiation. Furthermore, heterozygous knockout of GATAD2A impaired recruitment of chromodomain helicase DNA-binding protein 4 (CHD4) to the methyl-binding domain protein 2 (MBD2)-containing nucleosome remodelling and deacetylation (NuRD) complex. Our present data suggest that mutations causing the haploinsufficiency of GATAD2A might contribute to amelioration of clinical severity in patients with ß-thalassaemia.


DNA-Binding Proteins/metabolism , Erythroid Precursor Cells/metabolism , Fetal Hemoglobin/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Nucleosomes/metabolism , Repressor Proteins/deficiency , beta-Thalassemia/metabolism , Acetylation , Adolescent , Cell Line , Child , Codon, Nonsense , DNA-Binding Proteins/genetics , Fetal Hemoglobin/genetics , Haploinsufficiency , Humans , Male , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Nucleosomes/genetics , Repressor Proteins/metabolism , beta-Thalassemia/genetics
18.
Nat Commun ; 12(1): 2482, 2021 04 30.
Article En | MEDLINE | ID: mdl-33931647

While oncogenes promote tumorigenesis, they also induce deleterious cellular stresses, such as apoptosis, that cancer cells must combat by coopting adaptive responses. Whether tumor suppressor gene haploinsufficiency leads to such phenomena and their mechanistic basis is unclear. Here, we demonstrate that elevated levels of the anti-apoptotic factor, CASP8 and FADD-like apoptosis regulator (CFLAR), promotes apoptosis evasion in acute myeloid leukemia (AML) cells haploinsufficient for the cut-like homeobox 1 (CUX1) transcription factor, whose loss is associated with dismal clinical prognosis. Genome-wide CRISPR/Cas9 screening identifies CFLAR as a selective, acquired vulnerability in CUX1-deficient AML, which can be mimicked therapeutically using inhibitor of apoptosis (IAP) antagonists in murine and human AML cells. Mechanistically, CUX1 deficiency directly alleviates CUX1 repression of the CFLAR promoter to drive CFLAR expression and leukemia survival. These data establish how haploinsufficiency of a tumor suppressor is sufficient to induce advantageous anti-apoptosis cell survival pathways and concurrently nominate CFLAR as potential therapeutic target in these poor-prognosis leukemias.


Apoptosis/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Gene Expression Regulation, Neoplastic/genetics , Haploinsufficiency , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Apoptosis/drug effects , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/genetics , Chromatin Immunoprecipitation , Dipeptides/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Genes, Tumor Suppressor , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/genetics , Humans , Indoles/pharmacology , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Promoter Regions, Genetic , Protein Array Analysis , Repressor Proteins/deficiency , Repressor Proteins/genetics , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
19.
Cell Rep ; 35(2): 108981, 2021 04 13.
Article En | MEDLINE | ID: mdl-33852861

Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.


Chromatin/metabolism , DNA-Binding Proteins/genetics , Diabetes Mellitus/genetics , Insulin/genetics , Pancreas/metabolism , Point Mutation , Repressor Proteins/genetics , Trans-Activators/genetics , Alleles , Animals , Chromatin/chemistry , Chromatin/pathology , DNA-Binding Proteins/deficiency , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Embryo, Mammalian , Gene Expression Regulation, Developmental , Humans , Infant, Newborn , Infant, Newborn, Diseases , Insulin/deficiency , Mice , Mice, Transgenic , Pancreas/growth & development , Pancreas/pathology , Promoter Regions, Genetic , Protein Isoforms/deficiency , Protein Isoforms/genetics , Repressor Proteins/deficiency , Trans-Activators/deficiency , Transcription, Genetic
20.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Article En | MEDLINE | ID: mdl-33811806

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Autism Spectrum Disorder/genetics , Haploinsufficiency/genetics , Histone Deacetylases/metabolism , Intellectual Disability/genetics , Repressor Proteins/genetics , Acetylation , Adolescent , Animals , Child , Child, Preschool , DNA Copy Number Variations/genetics , Female , Histones/chemistry , Histones/metabolism , Humans , Infant , Larva/genetics , Magnetic Resonance Imaging , Male , Middle Aged , Models, Molecular , Mutation , Repressor Proteins/deficiency , Repressor Proteins/metabolism , Syndrome , Young Adult , Zebrafish/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
...